Trang chủ / Công trình nghiên cứu / Từ tính của vật liệu ferit kẽm chế tạo bằng phương pháp nghiền năng lượng cao
Từ tính của vật liệu ferit kẽm chế tạo bằng phương pháp nghiền năng lượng cao
05/01/2018
Tiến trình từ hóa theo thời gian nghiền được thảo luận và đánh giá bởi sự sắp xếp lại các cation trong cấu trúc spinen do quá trình nghiền gây ra...
Magnetic properties of zinc ferrite synthesized by high-energy ball milling
TRAN QUOC LAP, PHAM THAO, LE HONG THANG NGUYEN HOANG VIET and NGUYEN THI HOANG OANH* Hanoi University of Science and Technology *E-mail: oanh.nguyenthihoang@hust.edu.vn
Ngày nhận bài: 25/9/2015, Ngày duyệt đăng: 28/11/2015
ABSTRACT
The nanocrystalline zinc ferrite (ZnFe2O4) was obtained by high-energy ball milling in planetary mill from a mix- ture of Fe3O4 and Zn. The formation of zinc ferrite was controlled by X-ray diffraction and magnetic measurements. The chemical homogeneity and morphology of powders were studied by X-ray microanalysis and scanning electron microscopy. The evolution of the magnetization versus milling time was discussed and evaluated in terms of milling induced cations reorganization in spinel structure. Keywords: high-energy ball milling, ZnFe2O4, magnetic, spinelTÓM TẮT
Ferit kẽm ( ZnFe2O4) dạng nano tinh thể thu được khi nghiền năng lượng cao hỗn hợp bột Fe3O4 và Zn trong máy nghiền hành tinh. Sự hình thành của ferit kẽm được nghiên cứu bởi nhiễu xạ Rơnghen và các phép đo từ tính. Tính đồng nhất hóa học và hình thái của các loại bột đã được nghiên cứu bằng vi phân tích X-ray và kính hiển vi điện tử quét. Tiến trình từ hóa theo thời gian nghiền được thảo luận và đánh giá bởi sự sắp xếp lại các cation trong cấu trúc spinen do quá trình nghiền gây ra. Từ khoá: nghiền năng lượng cao, ZnFe2O4, từ tính, spinen 1. Introduction Soft magnetic ferrites with spinel structure are materials with a large variety of applications in electronic and telecommunication industries [1]. These ferrites have a structural formula of MFe2O4, where M is divalent metal ion from 3d transition elements such as Mn, Cu, Ni, Co, Zn or their combinations. Among spinel ferrites, zinc fer- rite has long been the subject of study because of its unique properties such as chemical and ther- mal stability and the particle size dependent mag- netic properties. ZnFe2O4 is characterized by a normal spinel structure in which Zn2+ cations with no magnetic moment occupy tetrahedral sites, while all the Fe3+ cations are in octahedral sites of close packed cubic lattice. No exchange interac- tion of each lattice site of ZnFe2O4 configuration takes place. The zinc ferrite is paramagnetic at room temperature. ZnFe2O4 is of particular inter- est in changes of magnetic behavior for nanoscale particles prepared by milling treatments or other means [2]. Several methods have been used to synthesize zinc ferrite nanoparticles such as ball milling, sol-gel, co-precipitation, hydrothermal technique auto-combustion route, ultrasonic cavi- tation, etc. Among above techniques, high-energy ball-milling or mechanochemical activation is the technique most used to prepare nanocrystalline powders of various materials due to its simplicity, low cost and good reproduction [3,4]. This paper presents the synthesis of nanocrys- talline zinc ferrite by high-energy ball milling and the characterization of some structural, morpho- logical and magnetic properties. 2. Experimental Magnetite and zinc powders were processed in a planetary ball mill with harden steel ball and jar. Raw materials were commercial Fe3O4 (98% pure) and Zn (99% pure) powders. The composi- tion of starting mixture was stoichiometric. The material/balls ratio was 1/10. Milling time was set to 10, 20, 30 and 50 h. The phase composition of samples was analyzed by X-ray diffractometer (XRD) with CuKu radiation. XRD patterns were recorded in range of 28 = 25+70 degree. Microstructure analysis was carried out using scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy. Magnetic proper- ties of milled powders were measured at room temperature in field up 15 kOe using a Vibrating Sample Magnetometer (VSM). 3. Results and discussion Fig. 1 shows X-ray diffraction patterns of start- ing powder mixture (Fe3O4 and Zn). The main dif- fraction peaks are belong to Fe3O4 and Zn phas- es. After milling for 50 h, the Bragg peaks of mag- netic and zinc phases disappeared and full zinc ferrite phase was obtained. During milling process, ZnO and Fe2O3 intermediate phases may appear after 2+10 h of milling fig. 1(b). It can be also noticed a small contamination of powders with iron from vial and balls. The powders contamination with elements from milling bodies is difficult to avoid completely and frequently encountered. [caption id="attachment_1895" align="aligncenter" width="300"]


Milling time (h) | HC (Oe) | MS (emu/g) | MR (emu/g) |
10 | 233.46 | 17.75 | 4.25 |
20 | 201.67 | 14.55 | 3.50 |
30 | 184.35 | 13.40 | 2.75 |
40 | 155.04 | 12.05 | 2.10 |
50 | 140.08 | 6.30 | 0.95 |

- P. M. Botta, P. G. Bercoff, E. F. Aglietti, H. R. Bertorello, J. M. Porto Lopez; Synthesis and magnetic proper- ties of zinc ferrite from mechanochemical and thermal treatments of Zn/Fe3O4 mixtures; Materials and Engineering A360, (2003), pp. 146-152.
- H. Ehrhardt, S. J. Campbell, M. Hofmann; Structural evolution of ball-milled ZnFe2O4; Journal of Alloys and Compounds 339, (2002), pp. 255–260.
- V. Sepelak , S. Wii mann, K. D. Becker; Journal of Magnetism and Magnetic Materials 203, (1999), pp. 135-137
- Zhao Zhong-Wei, Ouyang Kingsam, Wang Ming; Trans. Nonferrous Met. Soc. China 20, (2010), pp. 1131-1135
- William D. Callister, David G. Rethwisch, Materials Science and Engineering: An Introduction; John Wiley & Sons; 8th edition (2010)
- T. F. Marinca, I. Chicinas, O. Isnard, V. Pop; Structural and magnetic properties of nanocrystalline ZnFe2O4 powder synthesized by reactive ball milling; Vol. 5, No. 1, January 2011, pp. 39-43
- O. M. Lemine, M. Bououdina, M. Sajieddine, A. M. Al-Saie, M. Shafi, A. Khatab, M. Al-hilali, M. Henini; Synthesis, structural, magnetic and optical properties of nanocrystalline ZnFe2O4; Physica B 406, (2011), pp. 1989–1994